STA2023 FINAL EXAM REVIEW

1.	Data that can be classified according to color are measured on what scale?				
	(a) Nominal	(b) Ordinal	(c) Interval	(d) Ratio	
2.	The difference between a samp	ole result and the true p	opulation result is know	s as:	
	(a) Population Error	(b) Sampling Error	(c) Non-sampling Err	or (d) Test Error	
3.	Data that provide information	about relative compari	sons, but not the magnitu	ıde of the differences is known as:	
	(a) Nominal	(b) Ordinal	(c) Interval	(d) Ratio	
	The computer giant IBM has survey to study the numbers	329,373 employees and of shares held by indiv	. 637,133 stockholders. A ridual stockholders.	vice-president plans to conduct a	
4.	Are the numbers of shares hele	d by stockholders discre	ete or continuous?		
	(a) Discrete (b) C	Continuous			
5.	What is the level of measurem (a) Nominal (b) C	ent for the number of sl Drdinal (c) Interval	hares held by stockholde (d) Ratio	rs?	
6.	If the survey is conducted by t	elephoning 50 randoml	y selected stockholders in	n each of the 50 Unites States, what	
	type of sampling is being used	?			
	(a) Random (b) Sy	stematic (c) Conver	ience (d) Stratified	(e) Cluster	
7.	In an experiment when the eff to have occurred?	ects from two or more v	variables cannot be distin	guished from each other, what is said	
	(a) Contrasting	(b) Blinding	(c) Commingling	(d) Confounding	
8.	In asample, members f	rom the population are	selected in such a way th	nat each individual member in the	
	population has an equal chance	e of being selected.			
	(a) Systematic	(b)Precise ((c) Stratified (d)	Random	
9.	Determine which of the four le data below:	evels of measurement (r	nominal, ordinal, interval	and ratio)is most appropriate for the	
	The social security numbers of	students in this class			
	(a) Nominal (b) G	Ordinal (c) Interval	(d) Ratio		
10.	<i>True or False.</i> The interval lev difference between any two dapoint.	el of measurement is lil ata values is meaningfu	ke the ordinal level with l. Moreover, data at this	the additional property that the level have a natural zero starting	
	• (a) True a (la) Ea				

(a) True (b) False

11. Which of the following statements are true?

- I. All variables can be classified as quantitative or qualitative variables.
- II. Qualitative variables can be continuous variables.
- III. Quantitative variables can be discrete variables.
 - (a) I Only (b) I and III Only (c) III Only (d) I and II Only (e) All correct

- 12. The variable that changes due to the manipulation of the independent variable is called the:
 - (a) explanatory variable (b) outcome variable (c) manipulated variable

The test scores of 40 students are summarized in the frequency table below Gudant

	Score	Students				
	50-59	14				
	60-69	6				
	70-79	5				
	80-89	9				
	90-99	6				
13.	What is the lov	ver limit for the	second cla	ss?		
	(a) 59.5	(b) 69.5	(c) 50	(d) 60		
14.	What is the cla	ss width in the	frequency t	able above?		
	(a) 9	(b) 10	(c) 8	(d) 54.5		
15.	What is the cla (a) 74.5	ss mid-point for (b) 75.5	r the class 7 (c) 76.5	70 –79 (d) 73		
16.	What are the u	pper limits for t	the last clas	s?		
	(a) 90	(b) 99	(c) 92	(d) 99.5		
17.	What are the u	pper and lower	boundarie	s for the third class?		
	(a) 59.5 – 6	9.5 (b) 69	.5 – 70.5	(c) 79.5 – 89.5	(d) 69.5 - 79.5	
18.	What is the rela	ative frequency	correspond	ling to the frequency	y of 14 for the first class?	
	(a) 14%	(b) 65	%	(c) 45%	(d) 35%	
19.	What values ar	What values are represented in the stemplot below?				
	stem	leaves				
	4	0 7				
	5	4 4				
	6	8 9				
	(a) 40, 47, 5	54, 59, 68, 60	((b) 41, 47, 54, 59, 68,	69	

(c) 40, 47, 68, 61, 71, 76 (d) 40, 47, 54, 54, 68, 69 **20.** *True or False.* In a normal distribution, the frequencies start low, then increase to one or two high frequencies, then decrease to a low frequency.

(a) True (b) False

21. A _______ is a graph consisting of bars of equal width drawn adjacent to each other (without gaps). The horizontal scale represents classes of quantitative data values and the vertical scale represents frequencies. The heights of the bars correspond to the frequency values.

(a) Bar-Graph (b) Histogram (c) Frequency Polygon (d) Stemplot

- 22. *True or False.* When a die is rolled 600 times, each of the 6 possible outcomes occurs about 100 times as we normally expect, so the frequency distribution summarizing the results is an example of a normal distribution.
 (a) True
 (b) False
- 23. Which graph is best for paired data consisting of the shoe size and heights of 30 randomly selected students?

	(a) Histogram	(b) dotplot	(c) scatterplot	(d) Pie Chart
24.	Each of the following	is a measure of c	enter EXCEPT	
	(a) Mean	(b) Mode	(c) Mid-Range	(d) Variance

25. Which measure of center divides a data set equally, such that half of the data values are above the measure and half of the data values are below the measure?

	(a) Mean	(b) Mode	(c) Median	(d) Mid-Range
26.	Which measure of	center should be use	ed with nominal data?	
	(a) Mean	(b) Mode	(c) Median	(d) Mid-Range

- 27.Which measure of center takes every value into account but can be affected by outliers?(a) Mean(b) Mode(c) Median(d) Mid-Range
- 28.The _____ is the value that occurs with the greatest frequency
(a) Mean(b) Median(c) Mode(d) Mid-Range
 - Questions 29 36 pertain to the following data below.

	17	19	21	18	20	18	19	20	20	21
29.	Wha (t is the n a) 19.9	nean?	(b) 20).4	(c) 19	9.3	(d) 18	8.6	
30.	Wha (t is the n a) 19.0	nedian?	(b) 19	9.5	(c) 20	0.0	(d) 18	8.7	
31.	Wha (t is the n a) 18	node?	(b) 19	9	(c) 22	1	(d) 20	0	
32.	Wha (t is the n a) 20	nid-range	e? (b) 21	1	(c) 19	Ð	(d) 18	8	

33.	What is the standard o	leviation?		
	(a).8	(b) 1.3	(c) 1.7	(d) 19.3
34.	What is the variance?			
	(a)1.2	(b)1.3	(c)1.7	(d)1.4
35.	Find the value of Q1			
	(a)18	(b) 19	(c) 20	(d) 21
36.	Find the value of Q3?			
	(a) 18	(b) 19	(c) 20	(d) 21
37.	The range, standard d	eviation, and var	iance are all mea	sures of?
	(a) variation	(b) center	(c) position	(d) distribution
38.	<i>True or False.</i> For any data set, the median is always equal to the 50 th percentil (a)True (b) False			
39.	If the standard deviati	on of a data set i	s 5.0, what is the	variance?
	(a) 2.5 (b) 1	.0.0 (c) 25.	0 (d) 250.0)
40.	Consider the boxplot l	pelow.		

Minimum ↓	Q1 ↓	Median (Q2) ↓	Q3 ↓	Maximum ↓
10	25	60	85	100

Which of the following statements are true?

- I. The Interquartile range is 60
- II. The maximum value is 110
- III. The 50th percentile is equal to 60
- (a) I only
- (b) II only
- (c) III only
- (d) I and II only
- (e) I and III only
- **41.** When the Final exam statistic test scores of 500 students were analyzed, a mean score of 82 was obtained with a standard deviation of 6. Assuming that the scores were normally distributed, how many students had scores between 76 and 88?
 - (a) 340 (b) 350 (c) 360 (d) 370
- **42.** Which score has a higher relative position, a score of 50 on a test for which the \bar{x} = 30 and s = 8, or a score of 375 on a test for which the \bar{x} = 280 and s = 44?

(a) A score of 50 (b) A score of 375 (c) Both scores have the same relative position

43. A professor gives 3 tests and uses a weighted average to determine the final grades in his Psychology class. The weights are as follows: Test 1 = 30%, Test 2 = 20%, and test 3 = 50%. If a student scores 95 on the first test, 70 on the second test, and 80 on the third test, what would be her final score? (a) 82.5 (b) 83.7 (c) 80.5 (d) 81.5 (e) 78.8 44. On a multiple choice test with five possible answers for each question, what is the probability of answering a question correctly if you make a guess? (a) 4/5 (b) 1/4 (c) 5/10 (d) 1/5 (e) 5/1 45. The probability of an event that is certain to occur will have a value of: (b) 0.050 (e) 0.999 (a) 0.00 (c) 0.100 (d) 1.00 46. Which of the following cannot be a probability value? (b) square root of 4 (a) .999 (c) 3/5 (d) 1.000 (e) 589/589 A study of 400 randomly selected American Airlines flights showed that 344 arrived on time. What is the estimated 47. probability of an American Airlines flight arriving late? (a) 0.86 (b) 0.68 (c) 0.14 (d) 0.162 (e) 1.16 **48**. In a survey of college students, 1,162 stated that they cheated on an exam and 2,468 stated that they did not. If one of these college students is randomly selected find the probability that he or she cheated on an exam? (b) .320 (d).679 (a) .471 (c) 2.12 49. In a survey of consumers aged 12 and older, respondents were asked how many cell phones were in use by the household. Among the respondents, 211 answered "none", 288 said "one", 366 said "two", 144 said "three", and 89 responded with "four or more". Find the probability that a randomly selected household has four or more cell phones in use? (a) 0.13 (b) 0.33 (c) 0.081 (d) 0.919 50. What is the probability of getting all three tails when a coin is flipped three times? (a) 1/6 (b) 0.167 (c) 0.500 (d) 0.125 51. A sample of 4 different calculators is randomly selected from a group containing 41 that are defective and 22 that have no defects. What is the probability that all four calculators selected are defective? Assume the selections are made with replacement. (a) 0.1794 (b) 0.1700 (c) 13.8442 (d) 0.0829 52. Find the complement of A, given that P(A) = 0.175(a) 0.8250 (b) 0.5741 (c) 0.9373 (d) 0.9285 Which approach to probability requires "equally likely outcomes"? 53. (a) Relative Frequency Approach (b) Classical Approach On an ACT or SAT test, a typical multiple-choice question has 4 possible answers. If you make a random guess on 54. one such question what is the probability that your response is wrong? (a) .20 (b) 0.25 (c) 0.80 (d) 0.75 55. Based on recent data from the U.S. National Center for Health Statistics, the probability of a baby being a boy is 0.523. What is the probability of a baby being a girl? (a) 0.487 (b) 0.497 (c) 0.477 (d) 0.587

56. A couple plans to have 4 children, what is the probability that all four will be girls? (Assume that boys and girls are equally likely)

(a) 0.938 (b) 0.0625 (c) 0.500 (d) 0.125

- 57. Refer to the question 44 above. What is the probability that at least one will be a boy?(a) 0.938 (b) 0.125 (c) 0.0625 (d) 0.945
- 58. Two six-sided dice are rolled. What is the probability that the sum of the two numbers on the dice will be three?(a) 1/18 (b) 1/2 (c) 2/12 (d) 3/36

Questions 58 - 63 pertain to the table below which describes the smoking habits of a group of students.

	Non Smoker	Occasional Smoker	Regular Smoker	Heavy Smoker	Total
Men	382	37	60	34	513
Women	403	31	74	37	545
Total	785	68	134	71	1058

- 59. If one person is randomly selected, find the probability that the person would be a heavy smoker.(a) 0.067 (b) 0.478 (c) 0.484 (d) 0.671
- 60. If one person is randomly selected, find the probability that the person would be a non-smoker OR a regular smoker?
 (a) 0.0868 (b) 0.869 (c) 0.742 (d) 1.868
- 61. If one person is randomly selected, find the probability that the person would be a non-smoker OR a woman?(a) 0.382 (b) 0.742 (c) 0.876 (d) 0.515
- 62. If one person is randomly selected, what is the probability that the person would be a woman, given that a regular smoker is selected?
 (a) 0.552 (b) 0.515 (c) 0.127 (d) 0.136
- 63. If two persons are randomly selected, what is the probability that they are both men who are heavy smokers? Assume the selections are made with replacement.
 (a) 0.235 (b) 0.005 (c) 0.229 (d) 0.001

64. If two persons are randomly selected, what is the probability of getting a woman who is a regular smoker and a man who is a non-smoker? Assume the selections are made with replacement. (a) 0.025 (b) 0.101 (c) 0.269 (d) 0.614 **65**. A student experiences difficulties with malfunctioning alarm clocks. Instead of using 1 alarm clock, he decides to use 3. What is the probability that at least 1 alarm clock works correctly if each individual alarm clock has a 90% chance of working correctly? (a) 0.729 (b) 0.271 (d) 0.999 (c) 0.001 66. Approximately 5% of American high school students drop out of high school before graduation. If 10 high school students are randomly selected, find the probability that 2 or fewer will drop out. (b) .055 (c) .989 (a) .086 (d) .945 (e) .914 67. Refer to question 66 above. Find the probability that at least 6 students will graduate (a) .000 (b) .377 (c) 1.000 (d) .623 (e) .957 68. Refer to question 66 above. Find the probability that 3 or more students will drop out (a) .989 (b) .945 (c) .011 (d).110 (e) .001 69. Refer to question 66 above. Would it be unusual to find that among the 10 randomly selected students, 3 or more drop out? (a) Yes (b) No 70. Refer to question 66 above. Find the probability that all 10 students stay in school and graduate. (a) .000 (c) .995 (b) 1.000 (d) .959 (e) .599 71. Each of the following is a requirement for a binomial distribution EXCEPT: (a) A fixed number of trials (b) Trials must be independent (c) All outcomes must be classified into 2 or more categories (d) Probabilities must remain constant for each trial 72. A question on a proficiency test is multiple choice with five possible answers, one of which is correct. Assuming that all responses are random guesses, find the probability that among 13 test subjects, at least five answer the question correctly. (a) .027 (b) .099 (d) .053 (c) .103 73. Rates of on-time flights for commercial jets are continuously tracked by the U.S Department of Transportation. Recently, Southwest Air had the best rate with 80% of its flights arriving on time. A test is conducted by randomly selecting 15 Southwest flights and observing whether they arrive on time. Find the probability that exactly 10 flights arrive on time. (a) .206 (b) .103 (c) .010 (d) .188 74. Refer to question 73. Find the probability that at least 10 flights arrive on time. (a) .939 (b) .061 (c) .854 (d) .759 75. Refer to question 73. Find the probability that at least 5 flights arrive late. (b). 836 (c) .939 (d) .164 (a) 1.00 76. Identify whether the given random variable is discrete or continuous: "The weight of the gold stored in Fort Knox" (a)Discrete (b) Continuous

77. Assume that readings on thermometers are normally distributed with a mean of 0 degrees and a standard deviation of 1.00. A thermometer is randomly selected and tested. Find the probability that the reading on the thermometer				a standard deviation	
	less than .81	ineter is randonity sele	cieu anu iesieu. Tinu inc	probability that the reading	on the thermonieter is
	(a) .2090	(b) .7910	(c) .2910	(d) .2119	
78.	Assume that readi	ngs on thermometers a	are normally distributed	with a mean of 0 degrees and	a standard deviation
	of 1.00. A thermore	meter is randomly sele	cted and tested. Find the	probability that the reading	on the thermometer is
	between -1.20 and	l 1.95			
	(a) .8593	(b) .9744	(c) .1151	(d).1895	
79.	Assume that readi of 1.00. A thermore	ngs on thermometers a meter is randomly sele	are normally distributed cted and tested. Find the	with a mean of 0 degrees and probability that the reading o	a standard deviation on the thermometer is
	greater than -1.75				
	(a) .9364	(b) .0401	(c) .1151	(d).9599	
80.	Assume that adult	ts have IQ scores that a	re normally distributed v	vith a mean of 100 and a stand	dard deviation
	of 15. Find the pro	bability that a random	ly selected adult has an I	Q between 110 and 120.	
	(a) .6700	(b) .7486	(c) .9082	(d) .1596	
~					

- 81. Refer to question 80 above. Find the IQ score at Q1 or the 25th percentile. This is the score which separates the bottom 25% from the top 75%.
 (a) 89.95 (b) 110.05 (c) 84.95 (d) .2514 (e) .7486
- **82.** The graph below depicts the standard normal distribution with a mean of 0 and standard deviation of 1. Find the indicated *z*-score in the graph below. **The shaded area is 0.7599.**

83. Assume that weight of newborn babies is normally distributed with a mean of 10 lbs and a standard deviation of 2 lbs. Find the probability that a randomly selected newborn baby is **greater than** 7 lbs.

(a) .0668 (b) .9332 (c) -1.5 (d) .1587

84.	Assume that men	ı heights are norma	ally distributed a	vith a mean 69.0 inches and a standard deviation of 2.8 inches.			
	In order to join th	In order to join the U.S. Marine Corp, the requirement is that men should have heights between 64 inches and 80 inches. Find the percentage of men who meet the height requirement.					
	inches. Find the p						
	(a) 68%	(b) 93%	(c) 96%	(d) 85%			
85.	Refer to question	84 above. If the he	eight requiremen	ts for the U.S. Marine Corp are changed so that all men are			
	eligible EXCEPT	the shortest 2% an	d the tallest 5%.	what are the new height requirements?			
	(a) 63 - 74	(b) 68 - 84	(c) 67 - 76	(d) 64 – 77			
	Assume that IQ s	scores are normall	y distributed wit	h a mean of 100 and a standard deviation of 15.			
86.	Find the probabil	lity that a randoml	y selected persor	has an IQ score between 88 and 112.			
	(a) .7881	(b) .2119	(c) .5762	(d) 0.8000			
87.	If 25 people are r	andomly selected,	find the probabil	ity that their mean IQ score is less than 103.			
	(a) .1587	(b) .8413	(c) 1.000	(d) .9938			
88.	If 100 people are	randomly selected	, find the probab	ility that their mean IQ is greater than 103.			
	(a) .8413	(b) 2.000	(c) .9772	(d) .0228			
89.	A teacher gives a	test and gets norn	nally distributed	results with a mean of 50 and a standard deviation of 10. The			
	letter grade A is assigned only to those in the top 10%. What score will a student need to receive an A?						
	(a) > 62.8	(b) > 66.8	(c) > 68.8	(d) > 52.5			
90.	True of False. A	Z-score must be ne	egative wheneve	t is located in the left half of the normal distribution.			
	(a) True	(b) False	0				
91.	The Genetics and	l IVF Institute conc	lucted a clinical t	rial of the XSORT method designed to increase the probability			
	of conceiving a g	irl. In the clinical t	rial 574 babies we	ere born to parents using the XSORT method, and 525 of them			
	method?	is the best point e	sumate of the po	pulation proportion of girls born to parents using the XSORI			

(a) .525 (b) .574 (c) .915 (d) 1.09 (e) .0915

92. Refer to question 90. Construct a 95% confidence interval estimate of the percentage of girls born to parents using the XSORT method.

(a) 0.819 < p < 0.865	(b) 0.865 < p < 0.916
(c) 0.838 < p < 0.882	(d) 0.892 < p < 0.937

93. Refer to question 91. What is the correct interpretation of the confidence interval estimate for the percentage of girls born to parents using the XSORT method?

(a) We are 95% confident that the true percentage of girls born to parents using the XSORT method will fall between 0.892 and 0.937.

(b) We are 95% confident that the interval estimate of the percentage of girls born to parents using the XSORT method will fall between 0.838 and 0.882.

(c) We are 95% confident that the interval from 0.838 to 0.882 contains the true value of the percentage of girls born to parents using the XSORT method.

(d) We are 95% confident that the interval from 0.892 to 0.937 contains the true percentage of girls born to parents using the XSORT method.

94. The use of the Internet is constantly growing. How many randomly selected adults must be surveyed to estimate the percentage of adults in the United States who now use the Internet? Assume that we want to be 99% confident that the sample percentage is within two percentage points of the true population percentage. Also assume that nothing is known about the percentage of adults using the Internet.

(a) 4,145 (b) 2,401 (c) 3,268 (d) 4,415

95. A simple random sample of 125 SAT scores has a <u>mean</u> of 1522. Assume that SAT scores have a standard deviation of 333. Construct a 99% confidence interval estimate of the <u>mean</u> SAT score.

(a) 1464 < μ < 1580	(b) 1445 < µ < 1599
(c) 1480 < μ < 1591	(d) 1510 < µ < 1652

96. How many adults must be randomly selected to estimate the mean FICO (credit rating) score of working adults in the United States? We want to be 95% confidence that the sample mean is within 3 points of the population mean, and the population standard deviation is 68.

(a) 1974 (b) 3407 (c) 1390 (d) 842

- 97. True or false. If the confidence level decreases, the margin of error increases.(a) True(b) False
- 98. True of False. If the sample size increases, the margin of error also increases, resulting in a wider confidence interval.(a) True(b) False

NOTE: Replace greater than/less than or equal to signs with just equal if that is what was taught by the instructor.

Questions 98 – 104 are based on the following:

A recent study showed that 53% of college applications were submitted online. Assume that this result is based on a simple random sample of 1,000 college applications, with 530 submitted online. Use a 0.01 significance level to test the claim that among all college applications the percentage submitted online is equal to 50%.

99.	State the claim in syn	nbolic form.			
	(a)P ≤ .50	(b) P ≥ .50	(c) p > .50	(d) p < .50	(e) p = .50
100.	Identify the null and	alternative hypoth	neses:		
	(a) Ho: p ≥ .50	H1: p < .50	(b) Ho	p: p = .50 H1: p ≠	.50
	(c) Ho: p > .50	H1: p ≤ .50	(d) Ho	$p: p \le .50$ H1: p >	.50
101.	What type of hypoth	esis test is this?			
	(a) left-tail	(b) right-tailed	(c) two-ta	niled	
102.	What is the value of	the test statistic?			
	(a) -1.90	(b) 0.9999	(c) 1.90	(d) .016	(e) 1.86
103.	What is the P-value?				
	(a) 0.9713	(b) 0.0574	(c) 1.90	(d) 0.574	(e) 0.0287

- 104.What is your conclusion?
(a) Reject the null(b) Fail to reject the null
- **105.** State the final conclusion in simple non-technical terms. Be sure to address the original claim (hint: see figure 8-7 on page 403):

- (a) There is not sufficient sample evidence to support the claim that the percentage of college applications submitted online is equal to 50%.
- (b) The sample data support the claim that the percentage of college applications submitted online is equal to 50%.
- (c) There is not sufficient evidence to warrant rejection of the claim that the percentage of college applications submitted online is equal to 50%.
- (d) There is sufficient evidence to warrant rejection of the claim that the percentage of college applications submitted online is equal to 50%.
- (e) There is not sufficient evidence to warrant rejection of the claim that the percentage of college applications submitted online is greater than 50%.

Questions 105 – 111 are based on the following:

In a survey, 1,865 out of 2,246 randomly selected adults in the United States said that texting while driving should be illegal. Using these results, conduct a hypothesis test at the 95% confidence level to test the claim that more than 80% of adults believe that texting while driving should be illegal.

106.	State the claim in sy	mbolic form.			
	(a) $P \le .80$	(b) P ≥ .80	(c) p>	•.80 (d) p <	< .80
107.	Identify the null and	d alternative hypo	otheses:		
	(a) Ho: p ≥ .80	H1: p < .80		(b) Ho: p < .80	H1: p ≥ .80
	(c) Ho: p > .80	H1: p ≤ .80		(d) Ho: p ≤ .80	H1: p > .80
108.	What type of hypot	hesis test is it?			
	(a) left-tail	(b) right-taile	ed	(c) two-tailed	
109.	What is the value of	the test statistic?			
	(a) 3.55	(b) 0.830	(c) 0.170	(d) 1.96	e) -3.55
110.	What is the P-value	?			
	(a) 0.9999	(b) 0.0001	(c) 3.55	(d) 1.96	(e) -3.55

- 111. What is your conclusion?(a) Reject the null(b) Fail to reject the null
- **112.** State the final conclusion in simple non-technical terms. Be sure to address the original claim (hint: see figure 8-7 on page 403)
 - (a) There is not sufficient sample evidence to support the claim that more than 80% of adults believe that texting while driving should be illegal.
 - (b) There is sufficient sample evidence to warrant rejection of the claim that more than 80% of adults believe that texting while driving should be illegal.
 - (c) There is not sufficient evidence to warrant rejection of the claim that more than 80% of adults believe that texting while driving should be illegal.
 - (d) The sample data support the claim that more than 80% of adults believe that texting while driving should be illegal.

Questions 112–117 are based on the following:

The health of the bear population in Yellowstone National Park is monitored by periodic measurements taken from anesthetized bears. In a sample of 100 bears, the mean weight was found to be 185 lbs. Assume that σ (population standard deviation) is known to be 125 lbs., use a 0.03 significance level to test the claim that the population mean weight of bears is equal to 210 lbs.

113.	State the claim in syr	nbolic form.			
	(a) $\mu \le .210$	(b) $\mu \ge .185$	(c) µ = 185	(d) µ = 210	(e) $\mu \ge 210$
114.	Identify the null and	alternative hypoth	eses:		
	(a) Ho: μ≥210	H1: μ < 210	(b) Ho	o: μ = 210 H1: μ	ι ≠ 210
	(c) Ho: μ ≠ 210	Η1: μ = 210	(d) Ho	p: μ ≤ 185 H1: μ	u > 185
115.	What type of hypoth	esis test is this?			
	(a) left-tail	(b) right-tailed	(c) two	o-tailed	
116.	What is the value of	the test statistic?			
	(a) 2.00	(b) 0.0228	(c) -2.00	(d) .0456	(e) 12.5
117.	What is the P-value?				
	(a) 0.0228	(b) 0.456	(c) -2.00	(d) 0.0456	(e) .9772

118. State the final conclusion in simple non-technical terms. Be sure to address the original claim (hint: see figure 8-7 on page 403):

- (a) There is not sufficient sample evidence to support the claim that the population mean weight of bears is equal to 210 lbs.
- (b) There is sufficient sample evidence to warrant rejection of the claim that the population mean weight of bears is equal to 210 lbs.
- (c) There is not sufficient evidence to warrant rejection of the claim that the population mean weight of bears is equal to 210 lbs.
- (d) The sample data support the claim that more than 80% of adults believe that the population mean weight of bears is equal to 210 lbs.

119. Find the number of successes x suggested by the given statement.

A computer manufacturer randomly selects 2880 of its computers for quality assurance and finds that 2.43% of these computers are found to be defective.

- (a) 68 (b) 70 (c) 75 (d) 73
- 120. Assume that you plan to use a significance level of $\alpha = 0.05$ to test the claim that $p_1 = p_2$. Use the given sample sizes and numbers of successes to find the pooled estimate \overline{p} . Round your answer to the nearest thousandth.

$n_1 = 382$	n2 = 183		
x1 = 72	$x_2 = 69$		
(a) 0.125	(b) 0.225	(c) 0.250	(d) 0.175

121. Assume that you plan to use a significance level of $\alpha = 0.05$ to test the claim that $p_1 = p_2$. Use the given sample sizes and numbers of successes to find the z test statistic for the hypothesis test.

 $n_1 = 124$ $n_2 = 119$ $x_1 = 51$ $x_2 = 43$ (a) z = 0.395(b) z = 0.799(c) z = 8.951(d) z = 16.623

122. In a vote on the Clean Water bill, 48% of the 205 Democrats voted for the bill while 42% of the 230 Republicans voted for it.

(a) z = 1.256 (b) z = 1.068 (c) z = 0.754 (d) z = 1.382

123. The table shows the number of households burglarized in a sample of households with dogs and in a sample of households without dogs. Assume that you plan to use a significance level of $\alpha = 0.01$ to test the claim that p1 < p2. Find the critical value(s) for this hypothesis test. Do the data support the claim that a smaller proportion of households with pet dogs are burglarized?

	Household with Dog	Household without Dog
Number of households in	225	137
sample		
Number of households	25	10
burglarized		

(a) z = -2.575; no (b) z = 2.33; yes (c) z = -1.96; yes (d) z = -2.33; no

124. Assume that you plan to use a significance level of $\alpha = 0.05$ to test the claim that $p_1 = p_2$, Use the given sample sizes and numbers of successes to find the P-value for the hypothesis test.

n1 = 50	n2 = 75			
$x_1 = 20$	x2 = 15			
(a) 0.0032		(b) 0.0001	(c) 0.0146	(d) 0.1201

125. Find the test statistic for the following data. Assume that the samples are independent and that they have been randomly selected.

Use the hypothesis that $p_1 > p_2$. Use a significance level of 0.01.

Sample 1Sample 2 $n_1 = 85$ $n_2 = 90$ $x_1 = 38$ $x_2 = 23$ (a) z = 2.66(b) z = -2.66(c) t = -2.38(d) t = 2.38

126. In a random sample of 500 people aged 20-24, 22% were smokers. In a random sample of 450 people aged 25-29, 14% were smokers. State both the null and alternative hypothesis for the claim that the proportion of smokers in the two age groups is the same. Use a significance level of 0.01.

(a) Ho: $P_1 \ge P_2$	H1: $P_1 < P_2$	(b) Ho $P_1 < P_2$	H1: $P_1 \ge P_2$
(c) Ho: $P_1 > P_2$	H1: $P_1 \le P_2$	(d) Ho: $P_1 = P_2$	H1: $P_1 \neq P_2$

127.Construct the indicated confidence interval for the difference between population proportions $p_1 - p_2$.Assume that the samples are independent and that they have been randomly selected.
 $x_1 = 68$, $n_1 = 93$ and $x_2 = 78$, $n_2 = 111$; Construct a 98% confidence interval for the difference
between population proportions $p_1 - p_2$.

(a) $-0.095 < p_1 - p_2 < 0.855$	(b) -0.119 < p ₁ - p ₂ < 0.176
(c) 0.607 < p ₁ - p ₂ < 0.855	(d) 0.584 < p ₁ - p ₂ < 0.879

128. Assume that the two samples are independent simple random samples selected from normally distributed

populations. Do not assume that the population standard deviations are equal.

Two types of flares are tested and their burning times (in minutes) are recorded. The summary statistics are given below.

<u>Brand X</u>	Brand Y
n = 35	n = 40
x = 19.4 min	x = 15.1min
s = 1.4 min	s = 0.8 min

Use a 0.05 significance level to test the claim that the two samples are from populations with the same mean. **State your final conclusion along with the test statistic.**

- (a) Fail to reject the null hypothesis; t = -16.025
- (c) Reject the null hypothesis; t = -16.025
- (b) Reject the null hypothesis; t = 16.025
- (d) Fail to reject the null hypothesis; t = 16.025

129. Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal.

Independent samples from two different populations yield the following data: $x_1 = 677$, $x_2 = 211$,

 $s_1 = 30$, $s_2 = 30$. The sample size is 245 for both samples. Find the 80% confidence interval for $\mu_1 - \mu_2$.

(a) 463 < μ1 - μ2 < 469	(b) 460 < μ1 - μ2 < 472
(c) 466 < µ1 - µ2 < 466	(d) 462 < µ1 - µ2 < 470

129. The two data sets are dependent. Find d to the nearest tenth.

A 59 58 60 63 51			
B 21 30 20 25 22			
(a) 43.3	(b) 34.6	(c) 45.0	(d) 20.8

130. Find sd.

The differences between two sets of dependent data are 21, 21, 15, 18, 15. Round to the nearest tenth.

(a) 3.0 (b) 2.4 (c) 6.0 (d) 3.9

131. Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd = 0. Compute the value of the t test statistic. Round intermediate calculations to four decimal places as needed and final answers to three decimal places as needed.

x	9	1	7	7	11			
y	6	3	3	8	6			
	(a)	t = 2	2.89	0		(b) $t = 0.415$	(c) $t = 0.578$	(d) t = 1.292

132. Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis.

Suppose you wish to test the claim that μd , the mean value of the differences d for a population of paired data, is greater than 0. Given a sample of n = 15 and a significance level of α = 0.01, what criterion would be used for rejecting the null hypothesis?

- (a) Reject null hypothesis if test statistic > 2.602.
- (b) Reject null hypothesis if test statistic > 2.977 or < 2.977.
- (c) Reject null hypothesis if test statistic > 2.624.

(d)Reject null hypothesis if test statistic < 2.624.

133. Construct a confidence interval for μ_d, the mean of the differences d for the population of paired data. Assume that the population of paired differences is normally distributed.

Using the sample paired data below, construct a 90% confidence interval for the population mean of all differences x - y.

x	3.3	6.8	5.9	4.3	7.6		
y	3.0	5.6	5.5	5.0	5.3		
(a)) -0.3	7<μ	d < 1.	77	(b) - 0.07 < μd < 1.4	7 (c) $0.22 < \mu d < 7.48$	(d) - 0.31 < µ _d < 1.71

134. State what the given confidence interval suggests about the two population means.

A researcher was interested in comparing the amount of time spent watching television by women and by men. Independent simple random samples of 14 women and 17 men were selected, and each person was asked how many hours he or she had watched television during the previous week. The summary statistics are as follows:

Men	Women
$\overline{x}_1 = 12.6$ hrs	$\overline{x}_2 = 14.0 \text{ hrs}$
s ₁ = 3.9 hrs	s ₂ = 5.2 hrs
n ₁ = 14	n2 = 17

The following 99% confidence interval was obtained for $\mu_1 - \mu_2$, the difference between the mean amount of time spent watching television for women and the mean amount of time spent watching television for men: -6.33 hrs < $\mu_1 - \mu_2 < 3.53$ hrs. What does the confidence interval suggest about the population means?

(a) The confidence interval limits include 0 which suggests that the two population means might be equal. There does not appear to be a significant difference between the mean amount of time spent watching television for women and the mean amount of time spent watching television for men.

(b) The confidence interval includes only negative values which suggests that the mean amount of time spent watching television for women is smaller than the mean amount of time spent watching television for men.

(c) The confidence interval includes only positive values which suggests that the mean amount of time spent watching television for women is larger than the mean amount of time spent watching television for men.

(d) The confidence interval limits include 0 which suggests that the two population means are unlikely to be equal. There appears to be a significant difference between the mean amount of time spent watching television for women and the mean amount of time spent watching television for men.

135. Given the linear correlation coefficient r and the sample size n, determine the critical values of r and use your finding to state whether or not the given r represents a significant linear correlation. Use a significance level of 0.05.

r = 0.71, n = 25

- (a) Critical values: $r = \pm 0.396$, no significant linear correlation
- (b) Critical values: $r = \pm 0.487$, no significant linear correlation
- (c) Critical values: $r = \pm 0.396$, significant linear correlation
- (d) Critical values: $r = \pm 0.487$, significant linear correlation

136. Find the value of the linear correlation coefficient r.

The paired data below consist of the test scores of 6 randomly selected students and the number of hours they studied for the test.

 137. Construct a scatterplot for the given data.x | -1 | 3 | 8 | 5 | 11 | 10 | -1 | -3 | -1y | 2 | 7 | 9 | 11 | 9 | 11 | 5 | 4 | 2

138. Suppose you will perform a test to determine whether there is sufficient evidence to support a claim of a linear correlation between two variables. Find the critical values of r given the number of pairs of data n and the significance level alpha:

 $n = 25, \alpha = 0.05$

(a) $r = \pm 0.505$ (b) r = 0.396 (c) r = 0.444 (d) $r = \pm 0.396$

- **139.** Use the given data to find the best predicted value of the response variable. Ten pairs of data yield r = 0.003 and the regression equation $\hat{y} = 2 + 3x$. Also, $\overline{y} = 5.0$. What is the best predicted value of \hat{y} for x = 2? (a) 5.0 (b) 17.0 (c) 7.0 (d) 8.0
- 140. Use the given data to find the equation of the regression line. Round the final values to three significant digits, if necessary.

y 2 4 13 20 30	x	6	8	20	28	36		
	у	2	4	13	20	30		
(a) i = (1) (1) + (1) (1 + (1)) i = (1 + (1)) (1 + (1)		(a) û -	n 70).	$(h) \hat{\alpha} = -2.70 + 0.90$	$(-) \hat{\alpha} = -2.70 + 0.901 \dots$	(1) = 2.70 + 0

141. Use a x^2 test to test the claim that in the given contingency table, the row variable and the column variable are independent. State the test statistic and critical value.

160 students who were majoring in either math or English were asked a test question, and the researcher recorded whether they answered the question correctly. The sample results are given below. At the 0.10 significance level, test the claim that response and major are independent.

	Correct	Incorrect
Math	27	53
English	43	37

- (a) Test statistic: $\chi^2 = -6.502$; Critical value: $\chi^2 = -2.706$
- (b) Test statistic: $\chi^2 = 4.735$; Critical value: $\chi^2 = 1.905$
- (c) Test statistic: $\chi^2 = 6.502$; Critical value: $\chi^2 = 2.706$
- (d) Test statistic: $\chi^2 = -4.735$; Critical value: $\chi^2 = -1.905$

142. Solve the problem. State your final conclusion and the test statistic.

Use a 0.01 significance level to test the claim that the proportion of men who plan to vote in the next election is the same as the proportion of women who plan to vote. 300 men and 300 women were randomly selected and asked whether they planned to vote in the next election. The results are shown below.

	Men	Women
Plan to vote	170	185
Do not plan to vote	130	115

- (a) Fail to reject the null hypothesis; $\chi^2 = 1.552$
- (c) Reject the null hypothesis; $\chi^2 = -6.635$
- (b) Reject the null hypothesis; $\chi^2 = -1.552$
- (d) Fail to reject the null hypothesis; $\chi^2 = 6.635$

1. A	41. A	81. A	121. A
2. B	42. A	82. D	122. D
3. B	43. A	83. B	123. C
4. A	44. D	84. C	124. A
5. D	45. D	85. A	125. D
6. D	46. B	86. C	126. B
7. D	47. C	87. B	127. B
8. D	48. B	88. D	128. A
9. A	49. C	89. A	129. B
10. B	50. D	90. A	130. A
11. B	51. A	91. C	131. D
12. B	52. A	92. D	132. C
13. D	53. B	93. D	133. A
14. B	54. D	94. A	134. A
15. A	55. C	95. B	135. C
16. B	56. B	96. A	136. A
17. D	57. A	97. B	137. D
18. D	58. A	98. B	138. D
19. D	59. A	99. E	139. A
20. A	60. B	100. B	140. D
21. B	61. C	101. C	141. C
22 .B	62. A	102. C	142. A
23. C	63. D	103. B	
24. D	64. A	104. B	
25. C	65. D	105. C	
26. B	66. C	106. C	
27. A	67. C	107. D	
28. C	68. C	108. B	
29. C	69. A	109. A	
30. B	70. E	110. B	
31. D	71. C	111. A	
32. C	72. B	112. D	
33. B	73. B	113. D	
34. C	74. A	114. B	
35. A	75. D	115. C	
36. C	76. B	116. C	
37. A	77. B	117. D	
38. A	78. A	118. B	
39. C	79. D	119. C	
40. E	80. D	120. B	